

#### Analysis Aufgabengruppe 2

$$1 \qquad f(x) = \frac{4}{1 + e^x}$$

#### a) Nullstelle

Ein Bruch ist nur dann null, wenn sein Zähler null ist. Dieser ist hier immer 4. Daher hat f keine Nullstelle.

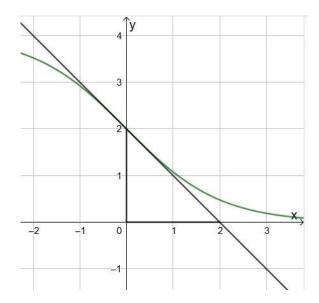
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4}{1 + e^{\hat{x}}} = \underline{4}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{4}{1 + e^{\frac{x}{x}}} = \frac{4}{\infty} = \underline{0}$$

Hinweis: Die Begründung ist hier entbehrlich. Ebenso gut kann man die Grenzwerte aus dem Graphen ablesen (auch ohne Begründung).

#### b) Mittlere Steigung (= mittlere Änderungsrate)

$$\frac{\Delta y}{\Delta x} = \frac{\frac{4}{1+e^1} - \frac{4}{1+e^{-1}}}{1 - (-1)} \approx \frac{-0.92}{1}$$



$$\underline{\mathbf{m}_{\mathsf{W}} = -1}$$



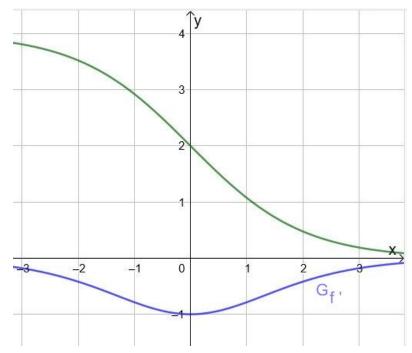
c) f'(-x) = f'(x)

Der Graph der Ableitung ist achsensymmetrisch zur y-Achse.

Außerdem gilt: f'(0) = -1 (vgl. b)

Dort liegt ein TIP der Ableitung vor, da f an der Stelle einen Wendepunkt hat (stärkstes Gefälle).

Wegen der waagrechten Asymptote des Graphen von f für sehr große x, ist die x-Achse auch Asymptote des Graphen der Ableitung.



**d)**  $F(x) = 4x - 4 \cdot ln(e^x + 1)$ 

$$F'(x) = 4 - 4 \cdot \frac{1}{e^x + 1} \cdot e^x = 4 - \frac{4e^x}{e^x + 1} = \frac{4(e^x + 1) - 4e^x}{e^x + 1} = \frac{4}{e^x + 1} = f(x)$$

F ist somit Stammfunktion von f.

**e)** Da f die 1. Ableitung von F ist und diese stets positiv ist, ist der Graph von F streng monoton steigend. Die 2. Ableitung von F (f') ist immer negativ (vgl. c). Daher ist der Graph von F immer rechtsgekrümmt und hat somit für große x eine waagrechte Asymptote.

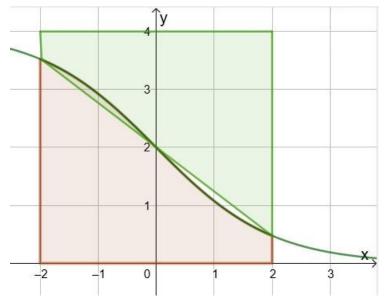
Für große x gilt näherungsweise:

$$\lim_{x\to\infty} F(x) = \lim_{x\to\infty} 4x - 4 \cdot \ln\left(e^x + 1\right) = \lim_{x\to\infty} 4x - 4 \cdot \ln\left(e^x\right) = \lim_{x\to\infty} 4x - 4 \cdot x \cdot \underbrace{\ln\left(e\right)}_{=1} = \lim_{x\to\infty} 0 = 0$$

Die x-Achse ist also waagrechte Asymptote von F für große x. Der Graph von F läuft daher stets unterhalb der x-Achse. Die Aussage ist also wahr.



 $\mathbf{f}$  Wegen der Symmetrie zum Wendepunkt ergibt sich z.B. für k = 2 folgendes Bild:



Der Wert des Integrals  $\int_{-2}^{2} f(x)dx$  beträgt genau die Hälfte der Fläche des

Rechtecks mit den Seitenlängen 4 und 4, also 8.

Für k = 1 hat das Rechteck die Seitenlängen 2 und 4 und somit die Fläche 8. Das Integral hat entsprechend den Wert 4.

Allgemein hat das Integral den Wert 4k.



2 
$$W_{a,b,c}(x) = \frac{a}{b + e^{cx}}$$

**a)** 
$$\underline{c=0}$$
:  $w_{a,b,0}(x) = \frac{a}{b+e^0} = \frac{a}{b+1}$ 

Dieser Wert ist konstant. Der Graph ist somit eine waagrechte Gerade und damit gehört Graph I zu c=0.

$$\underline{c=1} \colon \lim_{x \to \infty} w_{a,b,1}(x) = \lim_{x \to \infty} \underline{\frac{a}{b+e^x}} = "\frac{a}{\infty}" = 0$$

Zu c=1 gehört daher Graph II.

Für den Fall c = -1 bleibt somit Graph III.

**b)** 
$$w(x) = \frac{40}{1 + e^{-0.2x}}$$

$$w(0) = \frac{40}{1+e^0} = \frac{40}{2} = 20$$

Es wurden 20 Seeadler angesiedelt.

$$\frac{w(x) = 32:}{1 + e^{-0.2x}} = 32 \implies 40 = 32(1 + e^{-0.2x}) \implies 1 + e^{-0.2x} = \frac{40}{32}$$
$$\Rightarrow e^{-0.2x} = 0.25 \implies -0.2x = \ln 0.25 \implies x = \frac{\ln 0.25}{-0.2} = 6.93147...$$

Nach knapp sieben Jahren ist die Anzahl der Seeadler auf 32 angewachsen.

c) Die Tangente lässt sich aus der gegebenen Steigung und dem Punkt (0/20) (vgl. b) leicht aufstellen durch Einsetzen in die allg. Geradengleichung:  $20 = 2 \cdot 0 + t \implies t = 20 \implies t(x) = 2x + 20$ 

$$t(4) = 2 \cdot 4 + 20 = 28$$

$$w(4) = \frac{40}{1 + e^{-0.2.4}} = \frac{40}{1 + e^{-0.8}} = 27,5989...$$

Bei beiden Graphen ergibt sich zum Zeitpunkt vier Jahre nach Ansiedlung in etwa der gleiche Wert.

- d) (1)  $\frac{a}{b+1} = 20 \iff \frac{a}{b+e^0} = 20$ : Es wurden 20 Seeadler neu angesiedelt.
  - (2)  $\lim_{x\to\infty} \frac{a}{b+e^{cx}} = 45$ : Auf lange Sicht werden 45 Seeadler auf der Inselgruppe leben.
  - (3)  $\frac{a}{b + e^{15c}} = 35$ : Nach 15 Jahren leben 35 Seeadler auf der Inselgruppe.



**e)** Wegen 2a) hat der Graph in etwa den Verlauf von Abb. III (negatives c). Die waagrechte Asymptote liegt wegen (2) bei 45.

(2) 
$$\lim_{x\to\infty} \frac{a}{b+e^{cx}} = 45 \implies \frac{a}{b} = 45 \implies a = 45b$$
 (2')

in (1): 
$$\frac{45b}{b+1} = 20 \implies 45b = 20b + 20 \implies 25b = 20 \implies \underline{b=0,8}$$

in (2)': 
$$a = 45 \cdot 0.8 \Rightarrow \underline{a = 36}$$